Analytics Plugins

PredictiveWorks. organizes advanced data analytics in five plugin categories:

Deep Learning

PredictiveWorks. externalizes Intel's BigDL deep learning as standardized analytics plugins, with the ability of seamless combination with any other plugin.

Neural networks of any flavor can be used via point-and-click selection as pipeline components.

Deep learning plugins are organized as WorksDL package.

Machine Learning

PredictiveWorks. externalizes Apache Spark ML machine learning as standardized analytics plugins, with the ability of seamless combination with any other plugin.

Feature engineering, classification, regression and more can be used via point-and-click selection as pipeline components.

Machine learning plugins are organized as WorksML package.

Natural Language

PredictiveWorks. support for standardized Natural Language Processing is based on the externalization of John Snow Labs' Spark NLP library as pipeline plugins.

Dependency parsing, Part of Speech Tagging, Named Entity Recognition, Sentiment Analysis, Word Embeddings and more can be used as pipeline components, also with the ability of seamless combination with any other plugin.

Natural language plugins are organized as WorksText package.

Queries & Rules

SQL queries for data discovery and business rules for condition matching are still important components of the data analytics spectrum.

PredictiveWorks. externalizes the query functionality of Apache Spark SQL for ad-hoc data aggregation, grouping and filtering for data in motion and historical data at rest. This plugin is organized as WorksSQL package.

PredictiveWorks. complex event processing capability is complemented by the provisioning of Drools' Business Rule Engine. This plugin is organized as WorksRules package.

SQL based data discovery and business rule execution can be combined with any other available plugin with a point-and-click interface.

Time Series

PredictiveWorks. support for standardized time series forecast and prediction is based on the externalization of Dr. Krusche & Partner's Spark Time library as pipeline plugins.

Time series aggregation, interpolation, resampling can be combined with seasonal & trend decomposition, regression and forecasting, or any other plugin.

Time series plugins are organized as WorksTS package.